Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Mol Med (Berl) ; 102(1): 95-111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37987775

RESUMO

Diabetic cardiomyopathy describes heart disease in patients with diabetes who have no other cardiac conditions but have a higher risk of developing heart failure. Specific therapies to treat the diabetic heart are limited. A key mechanism involved in the progression of diabetic cardiomyopathy is dysregulation of cardiac energy metabolism. The aim of this study was to determine if increasing the expression of medium-chain acyl-coenzyme A dehydrogenase (MCAD; encoded by Acadm), a key regulator of fatty acid oxidation, could improve the function of the diabetic heart. Male mice were administered streptozotocin to induce diabetes, which led to diastolic dysfunction 8 weeks post-injection. Mice then received cardiac-selective adeno-associated viral vectors encoding MCAD (rAAV6:MCAD) or control AAV and were followed for 8 weeks. In the non-diabetic heart, rAAV6:MCAD increased MCAD expression (mRNA and protein) and increased Acadl and Acadvl, but an increase in MCAD enzyme activity was not detectable. rAAV6:MCAD delivery in the diabetic heart increased MCAD mRNA expression but did not significantly increase protein, activity, or improve diabetes-induced cardiac pathology or molecular metabolic and lipid markers. The uptake of AAV viral vectors was reduced in the diabetic versus non-diabetic heart, which may have implications for the translation of AAV therapies into the clinic. KEY MESSAGES: The effects of increasing MCAD in the diabetic heart are unknown. Delivery of rAAV6:MCAD increased MCAD mRNA and protein, but not enzyme activity, in the non-diabetic heart. Independent of MCAD enzyme activity, rAAV6:MCAD increased Acadl and Acadvl in the non-diabetic heart. Increasing MCAD cardiac gene expression alone was not sufficient to protect against diabetes-induced cardiac pathology. AAV transduction efficiency was reduced in the diabetic heart, which has clinical implications.


Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea , Diabetes Mellitus , Cardiomiopatias Diabéticas , Erros Inatos do Metabolismo Lipídico , Doenças Mitocondriais , Doenças Musculares , Humanos , Masculino , Camundongos , Animais , Acil-CoA Desidrogenase/genética , Acil-CoA Desidrogenase/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/terapia , Terapia Genética , RNA Mensageiro/genética
2.
Am J Physiol Cell Physiol ; 325(4): C1097-C1105, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721002

RESUMO

Cardiomyocyte calcium homeostasis is a tightly regulated process. The mitochondrial calcium uniporter (MCU) complex can buffer elevated cytosolic Ca2+ levels and consists of pore-forming proteins including MCU, and various regulatory proteins such as mitochondrial calcium uptake proteins 1 and 2 (MICU1/2). The stoichiometry of these proteins influences the sensitivity to Ca2+ and the activity of the complex. However, the factors that regulate their gene expression remain incompletely understood. Long noncoding RNAs (lncRNAs) regulate gene expression through various mechanisms, and we recently found that the lncRNA Tug1 increased the expression of Mcu and associated genes. To further explore this, we performed antisense LNA knockdown of Tug1 (Tug1 KD) in H9c2 rat cardiomyocytes. Tug1 KD increased MCU protein expression, yet pyruvate dehydrogenase dephosphorylation, which is indicative of mitochondrial Ca2+ uptake, was not enhanced. However, RNA-seq revealed that Tug1 KD increased Mcu along with differential expression of >1,000 genes including many related to Ca2+ regulation pathways in the heart. To understand the effect of this on Ca2+ signaling, we measured phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and its downstream target cAMP Response Element-Binding protein (CREB), a transcription factor known to drive Mcu gene expression. In response to a Ca2+ stimulus, the increase in CaMKII and CREB phosphorylation was attenuated by Tug1 KD. Inhibition of CaMKII, but not CREB, partially prevented the Tug1 KD-mediated increase in Mcu. Together, these data suggest that Tug1 modulates MCU expression via a mechanism involving CaMKII and regulates cardiomyocyte Ca2+ signaling, which could have important implications for cardiac function.NEW & NOTEWORTHY Calcium is essential for signaling, excitation contraction, and energy homeostasis in the heart. Despite this, molecular regulators of these processes are not completely understood. We report that knockdown of lncRNA Tug1 alters the calcium handling transcriptome and increases mitochondrial calcium uniporter expression via a mechanism involving CaMKII. As overexpression of MCU is known to be protective against pathological cardiac remodeling, targeting Tug1 may be a potential strategy for treating cardiovascular disease.


Assuntos
Sinalização do Cálcio , Miócitos Cardíacos , RNA Longo não Codificante , Animais , Ratos , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
3.
Adv Physiol Educ ; 47(4): 831-837, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37650145

RESUMO

A national Task Force of 25 Australian physiology educators used the Delphi protocol to develop seven physiology core concepts that were agreed to nationally. The aim of the current study was to unpack the "physiological adaptation" core concept with the descriptor "organisms adjust and adapt to acute and chronic changes in the internal and external environments across the lifespan." This core concept was unpacked by three Task Force members and a facilitator into four themes and nine subthemes that encompass the role of stressors and disturbed homeostasis in adaptation and the capacity for, and the nature of, the physiological adaptation. Twenty-two Task Force members then provided feedback and rated the themes and subthemes for level of importance and difficulty for students to learn via an online survey using a five-point Likert scale. Seventeen respondents completed all survey questions. For all themes/subthemes, importance was typically rated 1 (Essential) or 2 (Important) (n = 17, means ±SD ranged from 1.1 ± 0.3 to 2.2 ± 0.9), and difficulty was typically rated 3 (Moderately Difficult) (n = 17, means ranged from 2.9 ± 0.7 to 3.4 ± 0.9). Subtle differences in the proportion of importance scores (n = 17, Fisher's exact: P = 0.004, ANOVA: F12,220 = 2.630, P = 0.003; n = 22, Fisher's exact: P = 0.002, ANOVA: F12,281 = 2.743, P < 0.001), but not difficulty scores, were observed between themes/subthemes, and free-text feedback was minor. The results suggest successful unpacking of the physiological adaptation core concept. The themes and subthemes can inform the design of learning outcomes, assessment, and teaching and learning activities that have commonality and consistency across curricula.NEW & NOTEWORTHY An Australian Task Force of physiology educators identified physiological adaptation as a core concept of physiology. It was subsequently unpacked into four themes and nine subthemes. These were rated, by the Task Force, Essential or Important and Moderately Difficult for students to learn. The themes and subthemes can inform the design of learning outcomes, assessments, and teaching and learning activities that have commonality and consistency across curricula.


Assuntos
Aprendizagem , Fisiologia , Humanos , Austrália , Currículo , Estudantes , Adaptação Fisiológica , Fisiologia/educação
4.
Int J Sport Nutr Exerc Metab ; 33(1): 1-10, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36109008

RESUMO

This study compared the recommended dose of sodium citrate (SC, 500 mg/kg body mass) and sodium bicarbonate (SB, 300 mg/kg body mass) for blood alkalosis (blood [HCO3-]) and gastrointestinal symptoms (GIS; number and severity). Sixteen healthy individuals ingested the supplements in a randomized, crossover design. Gelatin capsules were ingested over 15 min alongside a carbohydrate-rich meal, after which participants remained seated for forearm venous blood sample collection and completion of GIS questionnaires every 30 min for 300 min. Time-course and session value (i.e., peak and time to peak) comparisons of SC and SB supplementation were performed using linear mixed models. Peak blood [HCO3-] was similar for SC (mean 34.2, 95% confidence intervals [33.4, 35.0] mmol/L) and SB (mean 33.6, 95% confidence intervals [32.8, 34.5] mmol/L, p = .308), as was delta blood [HCO3-] (SC = 7.9 mmol/L; SB = 7.3 mmol/L, p = .478). Blood [HCO3-] was ≥6 mmol/L above baseline from 180 to 240 min postingestion for SC, significantly later than for SB (120-180 min; p < .001). GIS were mostly minor, and peaked 80-90 min postingestion for SC, and 35-50 min postingestion for SB. There were no significant differences for the number or severity of GIS reported (p > .05 for all parameters). In summary, the recommended doses of SC and SB induce similar blood alkalosis and GIS, but with a different time course.


Assuntos
Alcalose , Gastroenteropatias , Humanos , Ingestão de Alimentos , Bicarbonato de Sódio , Citrato de Sódio , Estudos Cross-Over
5.
Free Radic Biol Med ; 194: 255-283, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526243

RESUMO

Growing evidence suggests that vitamin C supplementation may be an effective adjunct therapy in the management of people with diabetes. This paper critically reviews the current evidence on effects of vitamin C supplementation and its potential mechanisms in diabetes management. Evidence from meta-analyses of randomized controlled trials (RCTs) show favourable effects of vitamin C on glycaemic control and blood pressure that may be clinically meaningful, and mixed effects on blood lipids and endothelial function. However, evidence is mostly of low evidence certainty. Emerging evidence is promising for effects of vitamin C supplementation on some diabetes complications, particularly diabetic foot ulcers. However, there is a notable lack of robust and well-designed studies exploring effects of vitamin C as a single compound supplement on diabetes prevention and patient-important outcomes (i.e. prevention and amelioration of diabetes complications). RCTs are also required to investigate potential preventative or ameliorative effects of vitamin C on gestational diabetes outcomes. Oral vitamin C doses of 500-1000 mg per day are potentially effective, safe, and affordable for many individuals with diabetes. However, personalisation of supplementation regimens that consider factors such as vitamin C status, disease status, current glycaemic control, vitamin C intake, redox status, and genotype is important to optimize vitamin C's therapeutic effects safely. Finally, given a high prevalence of vitamin C deficiency in patients with complications, it is recommended that plasma vitamin C concentration be measured and monitored in the clinic setting.


Assuntos
Diabetes Gestacional , Pé Diabético , Gravidez , Feminino , Humanos , Vitaminas , Suplementos Nutricionais , Ácido Ascórbico/uso terapêutico
6.
BMC Biol ; 20(1): 164, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850762

RESUMO

BACKGROUND: Mitochondria have an essential role in regulating metabolism and integrate environmental and physiological signals to affect processes such as cellular bioenergetics and response to stress. In the metabolically active skeletal muscle, mitochondrial biogenesis is one important component contributing to a broad set of mitochondrial adaptations occurring in response to signals, which converge on the biogenesis transcriptional regulator peroxisome proliferator-activated receptor coactivator 1-alpha (PGC-1α), and is central to the beneficial effects of exercise in skeletal muscle. We investigated the role of long non-coding RNA (lncRNA) taurine-upregulated gene 1 (TUG1), which interacts with PGC-1α in regulating transcriptional responses to exercise in skeletal muscle. RESULTS: In human skeletal muscle, TUG1 gene expression was upregulated post-exercise and was also positively correlated with the increase in PGC-1α gene expression (PPARGC1A). Tug1 knockdown (KD) in differentiating mouse myotubes led to decreased Ppargc1a gene expression, impaired mitochondrial respiration and morphology, and enhanced myosin heavy chain slow isoform protein expression. In response to a Ca2+-mediated stimulus, Tug1 KD prevented an increase in Ppargc1a expression. RNA sequencing revealed that Tug1 KD impacted mitochondrial Ca2+ transport genes and several downstream PGC-1α targets. Finally, Tug1 KD modulated the expression of ~300 genes that were upregulated in response to an in vitro model of exercise in myotubes, including genes involved in regulating myogenesis. CONCLUSIONS: We found that TUG1 is upregulated in human skeletal muscle after a single session of exercise, and mechanistically, Tug1 regulates transcriptional networks associated with mitochondrial calcium handling, muscle differentiation and myogenesis. These data demonstrate that lncRNA Tug1 exerts regulation over fundamental aspects of skeletal muscle biology and response to exercise stimuli.


Assuntos
RNA Longo não Codificante/genética , Animais , Metabolismo Energético , Humanos , Camundongos , Mitocôndrias/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Longo não Codificante/metabolismo
7.
Nutr Diabetes ; 12(1): 31, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676248

RESUMO

There is increasing evidence that skeletal muscle microvascular (capillary) blood flow plays an important role in glucose metabolism by increasing the delivery of glucose and insulin to the myocytes. This process is impaired in insulin-resistant individuals. Studies suggest that in diet-induced insulin-resistant rodents, insulin-mediated skeletal muscle microvascular blood flow is impaired post-short-term high fat feeding, and this occurs before the development of myocyte or whole-body insulin resistance. These data suggest that impaired skeletal muscle microvascular blood flow is an early vascular step before the onset of insulin resistance. However, evidence of this is still lacking in humans. In this review, we summarise what is known about short-term high-calorie and/or high-fat feeding in humans. We also explore selected animal studies to identify potential mechanisms. We discuss future directions aimed at better understanding the 'early' vascular mechanisms that lead to insulin resistance as this will provide the opportunity for much earlier screening and timing of intervention to assist in preventing type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Dieta , Insulina/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo
8.
Am J Physiol Endocrinol Metab ; 323(5): E418-E427, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35723226

RESUMO

Adipose tissue microvascular blood flow (MBF) is stimulated postprandially to augment delivery of nutrients and hormones to adipocytes. Adipose tissue MBF is impaired in type 2 diabetes (T2D). Whether healthy individuals at-risk of T2D show similar impairments is unknown. We aimed to determine whether adipose tissue MBF is impaired in apparently healthy individuals with a family history of T2D. Overnight-fasted individuals with no family history of T2D for two generations (FH-, n = 13), with at least one parent with T2D (FH+, n = 14) and clinically diagnosed T2D (n = 11) underwent a mixed meal challenge (MMC). Metabolic responses [blood glucose, plasma insulin, plasma nonesterified fatty acids (NEFAs), and fat oxidation] were measured before and during the MMC. MBF in truncal subcutaneous adipose tissue was assessed by contrast ultrasound while fasting and 60 min post-MMC. FH+ had normal blood glucoses, increased adiposity, and impaired post-MMC adipose tissue MBF (Δ0.70 ± 0.22 vs. 2.45 ± 0.60 acoustic intensity/s, P = 0.007) and post-MMC adipose tissue insulin resistance (Adipo-IR index; Δ45.5 ± 13.9 vs. 7.8 ± 5.1 mmol/L × pmol/L, P = 0.007) compared with FH-. FH+ and T2D had an impaired ability to suppress fat oxidation post-MMC. Fat oxidation incremental area under the curve (iAUC) (35-55 min post-MMC, iAUC) was higher in FH+ and T2D than in FH- (P = 0.005 and 0.009, respectively). Postprandial MBF was negatively associated with postprandial fat oxidation iAUC (P = 0.01). We conclude that apparently healthy FH+ individuals display blunted postprandial adipose tissue MBF that occurs in parallel with adipose tissue insulin resistance and impaired suppression of fat oxidation, which may help explain their heightened risk for developing T2D.NEW & NOTEWORTHY Adipose tissue blood flow plays a key role in postprandial nutrient storage. People at-risk of type 2 diabetes have impaired postmeal adipose tissue blood flow. Impaired adipose tissue blood flow is associated with altered fat oxidation. Risk of type 2 diabetes may be elevated by poor adipose tissue blood flow.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Insulinas , Adulto , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Glicemia/metabolismo , Resistência à Insulina/fisiologia , Microcirculação , Ácidos Graxos não Esterificados/metabolismo , Período Pós-Prandial/fisiologia , Tecido Adiposo/metabolismo , Nutrientes , Hormônios/metabolismo , Insulinas/metabolismo , Insulina/metabolismo
9.
Cell Mol Life Sci ; 79(5): 256, 2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35460430

RESUMO

Major stores of glucose are found as glycogen in skeletal muscle and liver. Skeletal muscle is a heterogenous tissue, with cellular metabolic and contractile distinctions dependent on whether the cell (fibre) is slow-twitch (Type I) or fast-twitch (Type II). We hypothesised that proteins important for glycogen metabolism would be differentially abundant between these diverse fibres. We further hypothesised that the cellular location of these proteins would be different in muscle samples between control (CON) and individuals with type 2 diabetes (T2D). We dissected individual muscle fibre segments from vastus lateralis skeletal muscle biopsy samples from CON and T2D and used cell-type-specific approaches to address muscle heterogeneity. We measured glycogen and glycogen-related proteins by immunoblotting techniques. A lower proportion of Type I fibres was found in muscle in T2D compared with CON. AMPK-ß2, glycogen branching enzyme (GBE), glycogen debranching enzyme (GDE), and glycogen phosphorylase (GP) were differentially localized between fibre types and in fibres from CON and T2D individuals. A key novel finding was that the majority of glycogen is loosely bound or cytosolic in location in human skeletal muscle. The proportion of this diffusible pool of glycogen was significantly lower in Type I fibres in T2D compared to CON. A hyperinsulinaemic, euglycaemic clamp in people with type 2 diabetes had no effect on the proportion of diffusible glycogen. We identify cell-type as an important consideration when assessing glycogen metabolism in muscle. Our findings demonstrate varying glucose handling abilities in specific muscle fibre types in type 2 diabetes. A model is presented to provide an overview of the cell-specific differences in glycogen metabolism in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo
10.
J Physiol ; 600(7): 1667-1681, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35045191

RESUMO

Insulin infusion increases skeletal muscle microvascular blood flow (MBF) in healthy people but is impaired during insulin resistance. However, we have shown that eliciting insulin secretion via oral glucose loading in healthy people impairs muscle MBF, whilst others have demonstrated intravenous glucose infusion stimulates MBF. We aimed to show that the route of glucose administration (oral versus intravenous) influences muscle MBF, and explore potential gut-derived hormones that may explain these divergent responses. Ten healthy individuals underwent a 120 min oral glucose tolerance test (OGTT; 75 g glucose) and on a subsequent occasion an intravenous glucose tolerance test (IVGTT, bypassing the gut) matched for similar blood glucose excursions. Femoral artery and thigh muscle microvascular (contrast-enhanced ultrasound) haemodynamics were measured at baseline and during the OGTT/IVGTT. Plasma insulin, C-peptide, glucagon, non-esterified fatty acids and a range of gut-derived hormones and incretins (gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1(GLP-1)) were measured at baseline and throughout the OGTT/IVGTT. The IVGTT increased whereas the OGTT impaired MBF (1.3-fold versus 0.5-fold from baseline, respectively, P = 0.0006). The impairment in MBF during the OGTT occurred despite producing 2.8-fold higher plasma insulin concentrations (P = 0.0001). The change in MBF from baseline (ΔMBF) negatively correlated with ΔGIP concentrations (r = -0.665, P < 0.0001). The natural log ratio of incretins GLP-1:GIP was positively associated with ΔMBF (r = 0.658, P < 0.0001), suggesting they have opposing actions on the microvasculature. Postprandial hyperglycaemia per se does not acutely determine opposing microvascular responses between OGTT and IVGTT. Incretins may play a role in modulating skeletal muscle MBF in humans. KEY POINTS: Insulin or mixed nutrient meals stimulate skeletal muscle microvascular blood flow (MBF) to aid in the delivery of nutrients; however, this vascular effect is lost during insulin resistance. Food/drinks containing large glucose loads impair MBF in healthy people; however, this impairment is not observed when glucose is infused intravenously (bypassing the gut). We investigated skeletal muscle MBF responses to a 75 g oral glucose tolerance test and intravenous glucose infusion and aimed to identify potential gut hormones responsible for glucose-mediated changes in MBF. Despite similar blood glucose concentrations, orally ingested glucose impaired, whereas intravenously infused glucose augmented, skeletal muscle MBF. The incretin gastric inhibitory polypeptide was negatively associated with MBF, suggestive of an incretin-mediated MBF response to oral glucose ingestion. This work provides new insight into why diets high in glucose may be detrimental to vascular health and provides new avenues for novel treatment strategies targeting microvascular dysfunction.


Assuntos
Glucose , Incretinas , Glicemia , Polipeptídeo Inibidor Gástrico/farmacologia , Glucose/farmacologia , Humanos , Incretinas/farmacologia , Insulina , Microcirculação , Músculo Esquelético
11.
Diabetologia ; 65(1): 216-225, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34590175

RESUMO

AIMS/HYPOTHESIS: Microvascular blood flow (MBF) increases in skeletal muscle postprandially to aid in glucose delivery and uptake in muscle. This vascular action is impaired in individuals who are obese or have type 2 diabetes. Whether MBF is impaired in normoglycaemic people at risk of type 2 diabetes is unknown. We aimed to determine whether apparently healthy people at risk of type 2 diabetes display impaired skeletal muscle microvascular responses to a mixed-nutrient meal. METHODS: In this cross-sectional study, participants with no family history of type 2 diabetes (FH-) for two generations (n = 18), participants with a positive family history of type 2 diabetes (FH+; i.e. a parent with type 2 diabetes; n = 16) and those with type 2 diabetes (n = 12) underwent a mixed meal challenge (MMC). Metabolic responses (blood glucose, plasma insulin and indirect calorimetry) were measured before and during the MMC. Skeletal muscle large artery haemodynamics (2D and Doppler ultrasound, and Mobil-O-graph) and microvascular responses (contrast-enhanced ultrasound) were measured at baseline and 1 h post MMC. RESULTS: Despite normal blood glucose concentrations, FH+ individuals displayed impaired metabolic flexibility (reduced ability to switch from fat to carbohydrate oxidation vs FH-; p < 0.05) during the MMC. The MMC increased forearm muscle microvascular blood volume in both the FH- (1.3-fold, p < 0.01) and FH+ (1.3-fold, p < 0.05) groups but not in participants with type 2 diabetes. However, the MMC increased MBF (1.9-fold, p < 0.01), brachial artery diameter (1.1-fold, p < 0.01) and brachial artery blood flow (1.7-fold, p < 0.001) and reduced vascular resistance (0.7-fold, p < 0.001) only in FH- participants, with these changes being absent in FH+ and type 2 diabetes. Participants with type 2 diabetes displayed significantly higher vascular stiffness (p < 0.001) compared with those in the FH- and FH+ groups; however, vascular stiffness did not change during the MMC in any participant group. CONCLUSIONS/INTERPRETATION: Normoglycaemic FH+ participants display impaired postprandial skeletal muscle macro- and microvascular responses, suggesting that poor vascular responses to a meal may contribute to their increased risk of type 2 diabetes. We conclude that vascular insulin resistance may be an early precursor to type 2 diabetes in humans, which can be revealed using an MMC.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Glicemia/metabolismo , Estudos Transversais , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Músculo Esquelético/metabolismo , Pais , Período Pós-Prandial
12.
Redox Biol ; 44: 102005, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34049222

RESUMO

Reactive oxygen species (ROS) are well known for their role in insulin resistance and the development of cardiometabolic disease including type 2 diabetes mellitus (T2D). Conversely, evidence supports the notion that ROS are a necessary component for glucose cell transport and adaptation to physiological stress including exercise and muscle contraction. Although genetic rodent models and cell culture studies indicate antioxidant treatment to be an effective strategy for targeting ROS to promote health, human findings are largely inconsistent. In this review we discuss human research that has investigated antioxidant treatment and glycemic control in the context of health (healthy individuals and during exercise) and disease (insulin resistance and T2D). We have identified key factors that are likely to influence the effectiveness of antioxidant treatment: 1) the context of treatment including whether oxidative distress or eustress is present (e.g., hyperglycemia/lipidaemia or during exercise and muscle contraction); 2) whether specific endogenous antioxidant deficiencies are identified (redox screening); 3) whether antioxidant treatment is specifically designed to target and restore identified deficiencies (antioxidant specificity); 4) and the bioavailability and bioactivity of the antioxidant which are influenced by treatment dose, duration, and method of administration. The majority of human research has failed to account for these factors, limiting their ability to robustly test the effectiveness of antioxidants for health promotion and disease prevention. We propose that a modern "redox screening" and "personalized antioxidant treatment" approach is required to robustly explore redox regulation of human physiology and to elicit more effective antioxidant treatment in humans.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Antioxidantes/farmacologia , Promoção da Saúde , Humanos , Estresse Oxidativo , Espécies Reativas de Oxigênio
13.
PLoS One ; 16(5): e0251808, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33999939

RESUMO

OBJECTIVES: To compare blood alkalosis, gastrointestinal symptoms and indicators of strong ion difference after ingestion of 500 mg.kg-1 BM sodium citrate over four different periods. METHODS: Sixteen healthy and active participants ingested 500 mg.kg-1 BM sodium citrate in gelatine capsules over a 15, 30, 45 or 60 min period using a randomized cross-over experimental design. Gastrointestinal symptoms questionnaires and venous blood samples were collected before ingestion, immediately post-ingestion, and every 30 min for 480 min post-ingestion. Blood samples were analysed for blood pH, [HCO3-], [Na+], [Cl-] and plasma [citrate]. Linear mixed models were used to estimate the effect of the ingestion protocols. RESULTS: For all treatments, blood [HCO3-] was significantly elevated above baseline for the entire 480 min post-ingestion period, and peak occurred 180 min post-ingestion. Blood [HCO3-] and pH were significantly elevated above baseline and not significantly below the peak between 150-270 min post-ingestion. Furthermore, blood pH and [HCO3-] were significantly lower for the 60 min ingestion period when compared to the other treatments. Gastrointestinal symptoms were minor for all treatments; the mean total session symptoms ratings (all times summed together) were between 9.8 and 11.6 from a maximum possible rating of 720. CONCLUSION: Based on the findings of this investigation, sodium citrate should be ingested over a period of less than 60 min (15, 30 or 45 min), and completed 150-270 min before exercise.


Assuntos
Bicarbonatos/sangue , Exercício Físico , Citrato de Sódio , Adulto , Alcalose , Feminino , Gastroenteropatias , Humanos , Masculino , Citrato de Sódio/administração & dosagem , Citrato de Sódio/farmacocinética
14.
Sci Rep ; 11(1): 10226, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986323

RESUMO

The aim of this study was to examine the relationship between endogenous testosterone concentrations and lean mass and handgrip strength in healthy, pre-menopausal females. Testosterone has been positively associated with lean mass and strength in young and older males. Whether this relationship exists in pre-menopausal females is unknown. Secondary data from the 2013-2014 National Health and Nutrition Examination Survey were used to test this relationship. Females were aged 18-40 (n = 716, age 30 ± 6 years, mean ± SD) and pre-menopausal. Multivariate linear regression models were used to examine associations between total testosterone, lean mass index (LMI) and handgrip strength. Mean ± SD testosterone concentration was 1.0 ± 0.6 nmol L-1 and mean free androgen index (FAI) was 0.02 ± 0.02. In pre-menopausal females, testosterone was not associated with LMI (ß = 0.05; 95%CI - 0.04, 0.15; p = 0.237) or handgrip strength (ß = 0.01; 95%CI - 0.11, 0.12; p = 0.926) in a statistically significant manner. Conversely, FAI was associated with LMI (ß = - 0.03; 95%CI - 0.05, - 0.02; p = 0.000) in a quadratic manner, meaning LMI increases with increasing FAI levels. Handgrip strength was not associated with FAI (ß = 0.06; 95%CI - 0.02, 0.15; p = 0.137). These findings indicate that FAI, but not total testosterone, is associated with LMI in pre-menopausal females. Neither FAI nor total testosterone are associated with handgrip strength in pre-menopausal females when testosterone concentrations are not altered pharmacologically.


Assuntos
Peso Corporal/fisiologia , Força da Mão/fisiologia , Testosterona/análise , Adulto , Androgênios/análise , Androgênios/sangue , Composição Corporal , Feminino , Mãos/fisiologia , Humanos , Inquéritos Nutricionais , Pré-Menopausa , Testosterona/sangue , Magreza/metabolismo
15.
Int J Sport Nutr Exerc Metab ; 31(2): 168-186, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33440332

RESUMO

This review aimed to identify factors associated with (a) physiological responses, (b) gastrointestinal (GI) symptoms, and (c) exercise performance following sodium citrate supplementation. A literature search identified 33 articles. Observations of physiological responses and GI symptoms were categorized by dose (< 500, 500, and > 500 mg/kg body mass [BM]) and by timing of postingestion measurements (in minutes). Exercise performance following sodium citrate supplementation was compared with placebo using statistical significance, percentage change, and effect size. Performance observations were categorized by exercise duration (very short < 60 s, short ≥ 60 and ≤ 420 s, and longer > 420 s) and intensity (very high > 100% VO2max and high 90-100% VO2max). Ingestion of 500 mg/kg BM sodium citrate induced blood alkalosis more frequently than < 500 mg/kg BM, and with similar frequency to >500 mg/kg BM. The GI symptoms were minimized when a 500 mg/kg BM dose was ingested in capsules rather than in solution. Significant improvements in performance following sodium citrate supplementation were reported in all observations of short-duration and very high-intensity exercise with a 500 mg/kg BM dose. However, the efficacy of supplementation for short-duration, high-intensity exercise is less clear, given that only 25% of observations reported significant improvements in performance following sodium citrate supplementation. Based on the current literature, the authors recommend ingestion of 500 mg/kg BM sodium citrate in capsules to induce alkalosis and minimize GI symptoms. Supplementation was of most benefit to performance of short-duration exercise of very high intensity; further investigation is required to determine the importance of ingestion duration and timing.


Assuntos
Alcalose/sangue , Suplementos Nutricionais , Exercício Físico/fisiologia , Gastroenteropatias/induzido quimicamente , Substâncias para Melhoria do Desempenho/administração & dosagem , Citrato de Sódio/administração & dosagem , Citrato de Sódio/efeitos adversos , Cápsulas , Humanos , Soluções
16.
Diabetes Care ; 44(2): 618-630, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33472962

RESUMO

BACKGROUND: Evidence suggests that vitamin C supplementation could be a potential therapy in type 2 diabetes. However, its effectiveness and evidence quality require further evaluation. PURPOSE: To investigate the efficacy of oral vitamin C supplementation in improving glycemic control, cardiovascular risk factors, and oxidative stress in people with type 2 diabetes. DATA SOURCES: Databases (PubMed, Embase, Scopus, Cochrane Library) and clinical trial registries were searched for randomized controlled trials up to 8 September 2020. STUDY SELECTION: Trials in adults with type 2 diabetes were included. Trials were excluded if supplements were not exclusive to vitamin C and if <2 weeks in duration. DATA EXTRACTION: Primary outcomes were HbA1c, glucose, cholesterol, triglycerides, and blood pressure (BP). Data were extracted for changes in outcomes between vitamin C and control groups. Evidence certainty was assessed using Grading of Recommendations, Assessment, Development, and Evaluation methods. DATA SYNTHESIS: Twenty-eight studies (N = 1,574 participants) were included in the review. Outcomes that changed to a statistically and clinically significant extent with vitamin C were systolic BP (mean difference -6.27 [95% CI -9.60, -2.96] mmHg; P = 0.0002), with moderate evidence certainty, and HbA1c (-0.54% [-0.90, -0.17]; P = 0.004) and diastolic BP (-3.77 [-6.13, -1.42] mmHg; P = 0.002) with very low evidence certainty. LIMITATIONS: Studies were predominantly short term (<6 months) with a small number of participants (n < 100). CONCLUSIONS: While evidence from short-term studies suggests that vitamin C supplementation may improve glycemic control and BP in people with type 2 diabetes, vitamin C supplementation cannot currently be recommended as a therapy until larger, long-term, and high-quality trials confirm these findings.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Adulto , Ácido Ascórbico/uso terapêutico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Suplementos Nutricionais , Controle Glicêmico , Fatores de Risco de Doenças Cardíacas , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Risco
17.
J Physiol ; 599(1): 83-102, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33191527

RESUMO

KEY POINTS: Exercise, insulin-infusion and low-glucose mixed-nutrient meal ingestion increases muscle microvascular blood flow which in part facilitates glucose delivery and disposal. In contrast, high-glucose ingestion impairs muscle microvascular blood flow which may contribute to impaired postprandial metabolism. We investigated the effects of prior cycling exercise on postprandial muscle microvascular blood flow responses to a high-glucose mixed-nutrient meal ingested 3 and 24 h post-exercise. Prior exercise enhanced muscle microvascular blood flow and mitigated microvascular impairments induced by a high-glucose mixed meal ingested 3 h post-exercise, and to a lesser extent 24 h post-exercise. High-glucose ingestion 3 h post-exercise leads to greater postprandial blood glucose, non-esterified fatty acids, and fat oxidation, and a delay in the insulin response to the meal compared to control. Effects of acute exercise on muscle microvascular blood flow persist well after the cessation of exercise which may be beneficial for conditions characterized by microvascular and glycaemic dysfunction. ABSTRACT: Exercise, insulin-infusion and low-glucose mixed-nutrient meal ingestion lead to increased muscle microvascular blood flow (MBF), whereas high-glucose ingestion impairs MBF. We investigated whether prior cycling exercise could enhance postprandial muscle MBF and prevent MBF impairments induced by high-glucose mixed-nutrient meal ingestion. In a randomized cross-over design, eight healthy young men ingested a high-glucose mixed-nutrient meal (1.1 g glucose/kg body weight; 45% carbohydrate, 20% protein and 35% fat) after an overnight fast (no-exercise control) and 3 h and 24 h after moderate-intensity cycling exercise (1 h at 70-75% V̇O2peak ). Skeletal muscle MBF, measured directly by contrast-enhanced ultrasound, was lower at 60 min and 120 min postprandially compared to baseline in all conditions (P < 0.05), with a greater decrease occurring from 60 min to 120 min in the control (no-exercise) condition only (P < 0.001). Despite this meal-induced decrease, MBF was still markedly higher compared to control in the 3 h post-exercise condition at 0 min (pre-meal; 74%, P = 0.004), 60 min (112%, P = 0.002) and 120 min (223%, P < 0.001), and in the 24 h post-exercise condition at 120 min postprandially (132%, P < 0.001). We also report that in the 3 h post-exercise condition postprandial blood glucose, non-esterified fatty acids (NEFAs), and fat oxidation were substantially elevated, and the insulin response to the meal delayed compared to control. This probably reflects a combination of increased post-exercise exogenous glucose appearance, substrate competition, and NEFA-induced insulin resistance. We conclude that prior cycling exercise elicits long-lasting effects on muscle MBF and partially mitigates MBF impairments induced by high-glucose mixed-nutrient meal ingestion.


Assuntos
Glicemia , Microcirculação , Músculo Esquelético , Glicemia/metabolismo , Glucose , Humanos , Insulina/metabolismo , Masculino , Período Pós-Prandial
18.
Med Sci Sports Exerc ; 53(2): 375-383, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32826637

RESUMO

PURPOSE: Whole-body vibration (WBV) therapy has been reported to potentially act as an exercise mimetic by improving muscle function and exercise capacity in a variety of healthy and clinical populations. Considering the important role that microvascular blood flow plays in muscle metabolism and exercise capacity, we investigated the muscle microvascular responses of acute WBV to knee extension exercise (KEX) in healthy individuals. METHODS: Eleven healthy adults (age: 33 ± 2 yr; body mass index: 23.6 ± 1.1 kg·m-2) underwent 3 min of WBV, or 3 min of KEX at 25% of one-repetition maximum, in a randomized order separated by a minimum of 72 h. Femoral arterial blood flow was measured via Doppler ultrasound, and thigh muscle microvascular blood flow was measured via contrast-enhanced ultrasound at baseline and throughout the 3-min postintervention recovery period. RESULTS: Both WBV and KEX significantly increased peak microvascular blood flow (WBV, 5.6-fold; KEX, 21-fold; both P < 0.05) during the 3-min recovery period. Despite a similar increase in femoral arterial blood flow (~4-fold; both P < 0.05 vs baseline) and whole-body oxygen consumption measured by indirect calorimetry (WBV, 48%; KEX, 60%; both P < 0.05 vs baseline) in both conditions, microvascular blood flow was stimulated to a greater extent after KEX. CONCLUSION: A single 3-min session of WBV in healthy individuals is sufficient to significantly enhance muscle microvascular blood flow. Despite KEX providing a more potent stimulus, WBV may be an effective method for improving microvascular blood flow in populations reported to exhibit microvascular dysfunction such as patients with type 2 diabetes.


Assuntos
Exercício Físico/fisiologia , Microcirculação , Músculo Esquelético/irrigação sanguínea , Vibração , Adulto , Pressão Sanguínea , Estudos Cross-Over , Metabolismo Energético , Feminino , Artéria Femoral/fisiologia , Frequência Cardíaca , Humanos , Joelho/fisiologia , Masculino , Músculo Esquelético/diagnóstico por imagem , Consumo de Oxigênio , Fluxo Sanguíneo Regional , Coxa da Perna/irrigação sanguínea , Ultrassonografia Doppler
19.
Am J Physiol Regul Integr Comp Physiol ; 320(4): R404-R416, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33326343

RESUMO

Intrauterine growth restriction programs adult cardiorenal disease, which may be exacerbated by pregnancy and obesity. Importantly, exercise has positive cardiovascular effects. This study determined if high-fat feeding exacerbates the known adverse cardiorenal adaptations to pregnancy in rats born small and whether endurance exercise can prevent these complications. Uteroplacental insufficiency was induced by bilateral uterine vessel ligation (Restricted) or sham (Control) surgery on embryonic day 18 (E18) in Wistar-Kyoto rats. Female offspring consumed a Chow or high-fat diet (HFD) from weaning and were randomly allocated to either a sedentary (Sedentary) or an exercise protocol at 16 wk; exercised before and during pregnancy (Exercise), or exercised during pregnancy only (PregEx). Systolic blood pressure was measured prepregnancy and rats were mated at 20 wk. During pregnancy, systolic blood pressure (E18) and renal function (E19) were assessed. Sedentary HFD Control females had increased estimated glomerular filtration rate (eGFR) compared with Chow. Compared with Control, Sedentary-Restricted females had increased eGFR, which was not influenced by HFD. Renal function was not affected by exercise and prepregnancy blood pressure was not altered. Restricted Chow-fed dams and dams fed a high-fat diet had a greater reduction in systolic blood pressure during late gestation, which was only prevented by Exercise. In summary, high-fat fed females born small are at a greater risk of altered cardiorenal adaptations to pregnancy. Although cardiovascular dysfunction was prevented by Exercise, renal dysfunction was not affected by exercise interventions. This study highlights that modifiable risk factors can have beneficial effects in the mother during pregnancy, which may impact fetal growth and development.


Assuntos
Pressão Sanguínea , Dieta Hiperlipídica , Treino Aeróbico , Retardo do Crescimento Fetal/fisiopatologia , Taxa de Filtração Glomerular , Rim/fisiopatologia , Adaptação Fisiológica , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Modelos Animais de Doenças , Feminino , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Ratos Endogâmicos WKY , Corrida
20.
Physiol Rep ; 8(16): e14520, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32812391

RESUMO

Skeletal muscle and extracellular vesicle (EV) miRNA expression increases following acute endurance exercise. However, research to date has only been performed in males. The aim of this study was to describe the expression levels of a subset of miRNAs in EVs following acute exercise and compare it to skeletal muscle miRNA expression. Twelve males (age 22.9 ± 2.6 years, mean ± SD) and eight females (age 23.0 ± 3.4 years) cycled for 60 min at 70% VO2 peak. Muscle biopsies and blood samples were collected at rest, immediately after and 3 hr after exercise. Acute exercise did not significantly alter the expression of miR-1, miR-16, miR-23b and miR-133a/b in EVs in males and females combined. There were no correlations between EV and skeletal muscle miRNA expression in any of the measured species at any time point. Exploratory analysis revealed differential miRNA responses to exercise between males and females. In males, a weak negative correlation was observed between skeletal muscle and EV miR-16 expression immediately following exercise; however, the physiological relevance of this correlation is unknown. Additionally, when compared with values at rest, male skeletal muscle miR-16 expression significantly increased immediately following exercise, whereas miR-133a expression significantly decreased 3 hr post exercise. Our findings suggest that miRNAs isolated from EVs are not a proxy for skeletal muscle miRNA content. Our exploratory data is the first known evidence of sex-specific differences in the miRNA response to an acute bout of endurance exercise, particularly for miRNA species implicated in mitochondrial metabolism and angiogenesis.


Assuntos
Exercício Físico , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , Músculo Esquelético/metabolismo , Adulto , Feminino , Humanos , Masculino , MicroRNAs/metabolismo , Músculo Esquelético/fisiologia , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...